
ISRAEL JOURNAL OF MATHEMATICS, Vol. 44, No. 1, 1983 

THE SHANNON-McMILLAN-BREIMAN 
THEOREM FOR A CLASS 
OF AMENABLE GROUPS t 

BY 

DONALD ORNSTEIN AND BENJAMIN WEISS 

ABSTRACT 

We prove the SMB theorem for amenable groups that possess F01ner sets {A,} 
with the property that for some constant M, and all n, I A ~'A, I= < M. I A, f. 

The usual proof of the Shannon-McMil lan-Breiman theorem depends on the 

two basic pointwise limit theorems, namely, the martingale convergence 

theorem and the individual ergodic theorem. When going over to groups other 

than Z or R, while the individual ergodic theorem can be extended to some 

groups (cf. [1], [3], [5]) the martingale convergence theorem fails already for Z 2 

(see for example [2], notwithstanding the claims in [6]). We have devised a new 

proof of the SMB theorem that avoids martingales and thus have been able to 

extend the SMB theorem to the same extent as one knows how to prove the 

individual ergodic theorem. In w we discuss the special F01ner sets that we need 

and give the disjointification technique needed to prove both theorems; w is 

devoted to a simpler (for us at least) proof of Tempe l 'man ' s  theorem while in w 

we prove the main result. Already for centered squares in Z 2 the results are not 

without interest and the proofs can be read with this example in mind. 

w Special averaging sets in amenable groups 

A countable amenable group G is a group for which there exists an invariant 

mean on the space of bounded functions B(G). E. F01ner proved that the 

following "finite" condition is equivalent to amenability. 
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There exists a sequence o[ finite sets A.,  called averaging sets, such that 

(1) l imlgA.AA,  I l iA ,  I=0,  [orallg E G. 

The symbol A denotes the symmetric difference of two sets, and I AI  is the 

number of elements of A. To be precise we have defined a sequence of 

approximately le[t invariant sets. It can be shown that if a left invariant mean on 

B(G)  exists, then so does a bi-invariant mean, and similarly there are approxi- 

mately bi-invariant sets, but we shall work systematically with left invariance. 

The mean ergodic theorem holds for any sequence of averaging sets and can be 

easily proved by the same methods that work for Z actions. For reference we 

record it: 

MEAN ERGODIC THEOREM. If G acts in a measure preserving [ashion on a finite 
measure space (X, Jd, it) then [or all J: E L2(X, ~, it) 

1 I lim ~ ~ [ ( a x ) - P [ ( x )  =0 
n ~  a ~ A n  2 

where P is the projection on the space o[ G-invariant [unctions. In particular, i]: G 
acts ergodically, then P[ = f [dit. 

However, for the pointwise ergodic theorem, already for Z, not every 

averaging sequence is suitable. For example, one can show the following. In any 

nonperiodic ergodic transformation (X, ~, It, T) there is a set E of measure 

one-half, and a sequence k, 1' ~, so that 

1 
k +n 

s u p -  ~ [1E(TJx) - I~,(TJx)] = 1, It-a.e. lim 
n / ~ - + 1  

Thus in spite of the fact that the sets [k, + 1, k, + n] are averaging sets in Z, the 

pointwise ergodic theorem fails for them. It seems to be a difficult problem, 

already for Z, to characterize precisely those averaging sets for which the 

pointwise ergodic theorem is valid. We shall make use of a sufficient condition 

used by Tempel'man. A sequence of averaging sets {A,} will be called special if 

in addition to (1) they also satisfy: 

(2) A1 C A : C - . . ,  

(3) for some constant M, and for all n, I A ~IA, I =< M-  I A, I. 

While (3) is the decisive condition, the centering implicit in (2) is also necessary 

as the example we cited earlier shows. Essentially the only groups for which the 
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existence of special averaging sets is known are the groups with polynomial 

growth, i.e., finitely generated groups for which the size of the sets of elements 

W., representable by a product of at most n generators, is bounded by a fixed 

power of n. In that case the W, 's themselves form a special averaging sequence. 

M. Gromov [4] has recently shown that a finitely generated group with 

polynomial growth is a finite extension of a nilpotent group, so that we are really 

discussing nilpotent groups. The reader can keep Z d in mind; all the difficulties 

occur already there. 

The following is an immediate consequence of the approximate invariance of 

any averaging sets: 

I l K  is any.finite set in G and 6 > 0 there is an no so that for all n >- no 

(4) ] { g E G : K g n A . / ~ a n d K g n ( G I A . ) / O } I / I A . I < 6 .  

Sets A ,  that satisfy (4) will be called (K - 6)-invariant. Note that for all g not in 

the exceptional set Kg is either entirely in A,  or completely disjoint from A,. 

Our basic technique is a procedure of disjointification that allows one to pass 

from general covers to disjoint covers. The next lemma resembles the classical 

Vitali covering lemma both in formulation and in proof. 

DISJOINTIFICATION LEMMA. If {A,} is a special averaging sequence, if Bo C B 

are finite sets and if to each g E Bo there is some index n (g)  so that A,(g)g C B then 

there is a subset B C Bo with the property 

(i) for g ~  h E B, A,(g)g f3 A,~h)h = 0 ,  

(ii) [ U g E a A , , g , . g I / I B I > = ( 1 / M ) . ] B o [ / ] B ] ,  

where M is the constant from condition (3) in the definition of a special averaging 

sequence. 

PROOF. Let g~EBo be any element with maximal n(g  0 and consider 

BL = B o \ A  ~g~A,~l)g~. If BI is non-empty choose any g2 E B~ with n(g2) maximal 

and set 

B2 = B1 \ A ~wA,(g~)g2. 

If B: is non-empty, let g3 be any element of B2 with maximal index n (g3),"" ". 

Since B0 is finite the procedure must terminate, and we set /3 = {g~, g2," �9 �9 }. By 

(2) and the construction (i) is satisfied while to check (ii) observe that on the one 

hand by construction 

I..J A ~g)A.~)g D Bo 
gEB 
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while by (3), f A ,~s)A,,g)gl < M IA.(g ~ �9 g 1, and by (i) the sets A.(g)g are disjoint. 
[] 

The role of B in the lemma is psychological and the assumption A,(~g C B  is 

unnecessary, since (ii) clearly is independent of I B I, and B doesn't enter in the 

proof. It is there because of the way in which the lemma will be applied. 

The next elementary lemma makes precise the statement that the number of 

different ways one can put disjoint translates of A,  's, n _-> no, into a set B C G is 

exponentially small in the number of elements of B as no gets large. An 

no-pattern in B, a finite subset of G, is a subset C C B, together with an index 

u(c) for every c E C so that u(c)>= no, the sets A~c)c C B  and are pairwise 
disjoint. 

LEMMA 1. The number of different no-patterns in B is 

O(exp2[h(]/IA~ol)lBI]), where h(x)  is the usual entropy function h ( x ) =  

- x l o g x  - (1 - x ) l o g ( 1  - x ) .  

PROOF. Recalling that A I C A 2 C ' . "  we choose elements d, C A ,  \ A ,  I. 

Given an no-pattern (C, v) in B, we construct the set D = {d~tc~" c : c  E C}. 

Clearly C and D have the same number of elements which is at most 

IBI/IA~ol. We claim that the pair of sets (C ,D)  completely specifies the 

no-pattern. Indeed, given (C, D)  one can recover u(c) as the minimal n such that 

A,  �9 c f3 D ~ Q, so that the number of no-patterns is at most the number of ways 
z IBI  -~2 of choosing a pair C, D which is at most ~JBJ/r �9 The lemma now follows by 

Stirling's formula in a well-known fashion. [] 

w T h e  e r g o d i e  t h e o r e m  

In this section we prove the following: 

ERGODIC THEOREM. If  {A, } is a special averaging sequence in an amenable 

group G, and G acts in a measure preserving fashion on a finite measure space 

(X, ~, /x) ,  then for any f ~ L1(X, ~, /z )  

1 
lira ~ ~ f ( g x ) = f * ( x )  
r l ~  g ~ A  n 

exists a.e. and is G-invariant. 

If f is of the form ~b (gox) - ck (x) for some bounded function and some go E G, 

then the approximate left invariance of the A,  's yields directly that f* (x)  = 0 for 

all x. As in the usual proof (following F. Riesz) of the mean ergodic theorem we 
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see that the closed linear span of such functions is the orthogonal complement of 

the invariant functions in L:. Since L2(X, ~, p~) is dense in LI(X, ~, ~)  it follows 

that the ergodic theorem will be proven if we can establish a lemma of the 

following type: 

LEMMA 2. Given e > O, there is a 8 > 0 so that 

f lf(x)Idtz(x) - 6 
implies that the set 

{ 1 I B =  x �9 !im ~ - ~ _ ~  a~AnE If(ax)l  >E 

has measure less than e. 

PROOF. We will show that 6 may be taken as e3/32M where M is the 

constant of the special averaging sequence. It is no loss in generality to assume 

that f => 0. I f /z  (B) =< e then we are done, so we may assume/z (B) > e. Find N1 

large enough so that 

{ 1 ~ f(ax)>=�89 e fo r some n < N , }  B, = x E B : I A , ] a ~ A .  = 

has measure at least ~/z (B). Choose now N2 so that Au2 is (An, - e/10)-invariant, 

and form 
1 

g(x ) = ~ ~'~ 1,,(ax ). 
a EAN2 

Then O_  < - g(x)<-_ 1 and fgdtz =/~(B1) so that the set 

C ={x : g(x)>--�89 

has measure at least ~/z(B~). Set 

1 
h(x)=~-A~N~ [ E f(ax).  

a EAN2 

If we can show that h(x) >= e2/8M for all x E C we will be done because of 

f f 6>= fdlx = hdtx>= h(x)dl~(x)>-_tz(C).8M 

E 2 >1  
=~/z (B)"  8M 

and recalling that 6 = e3/32M yields / z ( B ) =  < e. For each x @ C let Dx = 

{a @ AN~ : AN, a CAN~ and ax E B~}. For each a ~ Dx associate that n ~ N~ such 

that 
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1 ~ f(a,ax)>=�89 e 
I A n l a ' E A .  

and apply the disjointification lemma. Since x @ C and AN2 is (AN,--e/10)- 

invariant, I Dxl/I AN2[>= e/4. By the disjointification lemma we cover at least 

e/4M of AN2 with disjoint A,  's for which the f-average is at least �89 e. This shows 

that h (x) is at least e 2/8M for x E C and the proof is done. [] 

w The S h a n n o n - M c M i l l a n - B r e i m a n  theorem 

Throughout this section we fix some ergodic measure preserving action of an 

amenable group G on (X, ~ , / z )  and we suppose that A,  is a special averaging 

sequence that is also right invariant. Fix some finite partition ~ = 

{e(1),.--, P(s)} of X and set 

~ ,  = V a - l ~ .  
aEA n 

Denote by ~ ,  (x) the atom of ~ ,  that contains x. We identify atoms of ~ ,  with 

their labels, i.e., elements of {1 ,2 , . . . , s}  A-, so that ~ , (x) ,  for example, is 

identified with its name, which is a map v : A,  ---~{1, �9 �9 s} so that ax E P(v(a)) 
for all a E A,. 

SMB THEOREM. I f  an amenable group with special averaging sequence {A,} 

acts ergodically on (X, ~, ~ ) and ~ is a finite partition then 

!im ~ ( - log/x (~ ,  (x))) = h 

exists a.e. where h is a constant called the entropy of ~ with respect to the action of 

G. 

To begin with set 

1 
h , ( x ) -  IA" [ logp.(~,(x)) ,  h(x )=l imin fh , (x ) .  

LEMMA 3. The function h(x) = h a.e. for some constant h. 

PROOF. For fixed e > 0 and g E G we shall show that 

(1) h(gx)<=h(x)+e a.e.x 

which will show that h is a subinvariant function, and hence by ergodicity is a 

constant a.e. To this end let's estimate the size of 
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E, ={x : hn(gx)> h , ( x ) +  e}. 

Set /~ .  = A ,  U A . g  and let ~ . (x )  be that atom of V,~,~ a - l ~  that contains x. 

Clearly ~ ,  (x) C ~ .  (gx) and thus if x C E,  

/x (~n(x)) < exp ( - I A ,  I" e ). 

For a fixed atom of 3~, the total number of ~ ,  (y)'s contained in it is no more 

than s tp'i-I IA.II ; hence we get by summing first over all 3~, (y)'s in a fixed atom of 

~ ,  and then over ~ ,  that 

Ix (E. ) < sl'A"l-Ja"l l " exp ( -  I A ,  [e) 

= exp[I A,  I ( - e  + ( I A ,  I / [ a ,  I-  a)log s)]. 

By the right invariance of the A.  's, [ .,~. [/{ A.  [ ~  1, and since the A,  's increase 

by at least one, it follows that for fixed e 

The Borel-Cantelli lemma says that a.e. x is only in finitely many F. 's whence 

(1). [] 

Again we fix some eo > 0 and let c~. denote the collection of atoms A in ~ .  for 

which 

_ log /x (A)  < h + e0. 
I A . I  = 

By Lemma 3, a.e. x belongs to infinitely many atoms of U~ %. 

LEMMA 4. For any k > 1 and a.e. x, if n is large enough there are elements 

g~ ~ G and atoms C~ E %~,), n(i)>= k, such that 

(i) g,x E C,, 
(ii) the sets A.r are disjoint, lie in A . ,  and I U,A.r  I /IA.  I >- 1 - 1/k. 

Supposing for the moment that Lemma 4 holds we can prove the SMB as 

follows. Compute 7"., the number of atoms of ~ .  that can be covered by atoms of 

U % as in the lemma. By Lemma 1 the number of abstract patterns {A.r that 

fill ( 1 -  1/k) of A.  is exponentially small, and there is a lower bound on the 

measure of sets in ~ ,  which gives of course an upper bound on their number; 

thus we get (choosing k large enough) for T~ the estimate 

IT, I =< exp( IA.  I(h + 2eo)). 

Thus, those atoms of 3~. that can be covered as in the lemma and have measure 
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less than e x p ( - I A ,  l (h+3eo))  have a total mass which is at most 

e x p ( -  IA, I" e0). This series is summable, and so a.e. x can be only in finitely 

many such atoms which gives that 

lim sup h , (x)  = < h + 3 . e 0  

for a . e .x .  Since eo is arbitrary this proves the theorem. 

It remains to demonstrate Lemma 4. 

PROOF OF LEMMA 4. Choose L large enough so that (1 - 1/2M) L =< 1/10k and 

then choose ~ = 1/lOOk(L + 1). Set Mo = k, and find No so that the union over 

the atoms in ~o = I..J~ ~ ~,~ has measure at least 1 - & For i = 1,. �9 L induc- 

tively choose Mi so that AM, is (AN,_~- 1/10M)-invariant and N, so that 
N. 

~, = U ,~, ~,~ covers at least 1 -  6 of X. Letting E = i"),L=o ( U ~,), notice that 

/ z ( E ) > I - ( L  +1)6, and then use the ergodic theorem to find a set of full 

measure of x 's  for which when n is sufficiently large the fraction of a ' s  in ~ .  (x) 

for which ax ~ E  is a t  least ( 1 - 2 L 6 ) .  For each such a, we have indices 

M~ _-< n~ (a)  =< N, for 0 _-< i _--< L so that ax E c~,,~a). First apply the disjointification 

lemma to the collection AnLta~a, to obtain a set B~ CA,  so that {A,~(a~- a : a @ B~} 

are pairwise disjoint a n d  U a~Bt AnL(a) ~ a fills a fraction of An that is at least 

l[3M. Removing all of these from A~ leaves a set that is still almost invariant 

with respect to ANL_,, SO that restricting to those A ... .  to~. a ' s  that are disjoint 

from A~(~). a, a ~ B~, still covers almost all of what was covered before. We 

apply the disjointification lemma again to this collection of A .... (~).a's and 

cover at least 1/M of what was left. Repeating the use of the disjointification 

lemma L times in this way we prove the lemma. [] 
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